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Abstract- It is proposed to detennine the overall response of linear elastic materials containing
non-intersecting spherical inhomogeneities without altering the microscopic geometry of a given
representative volume element. In the proposed method, a system of integral equations fonnulated
for such an element is accurately approximated by a system of linear algebraic equations.

I. INTRODUCTION

In this paper, we are concerned with the overall response oflinear elastic materials composed
of an isotropic matrix filled with non-intersecting spherical inhomogeneities. Since this is
an open problem and its complete solution is virtually impossible, a large number of
approximate approaches have been proposed. The approaches accepted in the solid mech­
anics community can be divided into two groups. The first group includes rigorous
approaches such as variational bounds [see reviews by Milton and Kohn (1988) and
Torquato (1991)] and asymptotic expansions in powers of the volume fraction of inhomo­
geneities (Chen and Acrivos, 1978; O'Brien, 1979). However, the usefulness of the rigorous
approaches is limited. Variational bounds work well only for composites with relatively
small contrast between the phases, and asymptotic expansions may not be applicable to
composites with high volume fractions of inhomogeneities. The second group ofapproaches
includes approximations such as self-consistent schemes, Mori-Tanaka theory, and other
effective medium theories [see reviews by Hashin (1983) and Mura (1982)]. In a typical
approximation, the elasticity problem for a given representative volume element (RVE) is
substituted by a problem(s) which involves an effective homogeneous matrix containing
only one inhomogeneity. The validity ofsuch a substitution is difficult to verify analytically,
since it is unclear how to choose a benchmark solution. Existing experimental verifications
are unsatisfactory as well: In each of four papers (Christensen, 1990; Cleary et al., 1980;
Weng, 1984; Zimmerman, 1991), experimental data were presented in support ofa different
approximation. Following Christensen (1990), this situation may be explained by the fact
that all approximations lead to somewhat similar predictions for dilute concentrations of
inhomogeneities, so that only experiments on densly concentrated composites can identify
a relevant approximation(s). Accordingly, Christensen (1990) demonstrates that the
preference should be given to the generalized self-consistent technique.

In this paper, an approach which does not alter the microscopic geometry of the RVE
is pursued. As explained in the next two sections, the proposed method of analysis is based
on an assumption which allows us to reduce a rigorous integral equation formulation of
the linear elasticity problem for N inhomogeneities inside the RVE to a system of 6N
linear algebraic equations. Since in the proposed method the microscopic geometry can be
unambiguously specified, the introduced assumption can be tested by applying the method
to simple RYEs for which solutions can be obtained with more involved numerical tech­
niques such as the finite element or boundary element methods. Accordingly, in Section 4,
the method's predictions are compared with existing numerical solutions for basic cubic
arrays of identical inhomogeneities.

As far as the solid mechanics literature is concerned, the proposed method can be
viewed as a generalization of results due to Nemat-Nasser et al. (1982) and Rodin and
Hwang (1991). In the former paper, simple cubic arrays of inhomogeneities are analysed
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using an assumption similar to the one adopted in this paper. However. because Nemat­
Nasser et al. used very slowly converging series, their approach is hardly applicable to other
arrays. The approach suggested by Rodin and Hwang is relevant only if there is a finite
number ofinhomogeneities contained in an infinite matrix. Other closely-related approaches
are considered in Section 5.

In this paper, the focus is on the derivation of the method and verification of its
accuracy; applications to random arrays of inhomogeneities will be presented elsewhere.

2. THE OVERALL RESPONSE

Consider a linear elastic RVE composed of an isotropic matrix and N non-intersecting
spherical inhomogeneities. The stiffness tensors of the inhomogeneities are designated by
CO, ('j, = I, ... , N; the matrix stiffness is C. The domains of the RVE and inhomogeneities
are denoted respectively by Vand V'. For simplicity, V and V" also designate the volumes
of the corresponding domains.

For a statistically homogeneous material (Hashin, 1983), the overall response is estab­
lished in terms of the macroscopic stress, u, and strain, fl. These quantities are defined as
the volume averages over the RVE:

u=Lf t1dV
V Jv

and

The macroscopic stress and strain are linearly related by

u = C*i,

(I)

(2)

(3)

where C* is termed the overall stiffness tensor. Also, a homogeneous material with stiffness
tensor c* is refered to as the effective matrix.

The tensor c* can be related to an average over the inhomogeneities:

u = I [.. t1 d V+L L [ t1 d V = VI [ Cs d V + vi L. [ exs d V
V Jv~v' V a Jv' Jv ~v'x Jv>

=~ [ CBdV+~·L. f C(s-P")dV=C(i-wj). (4)
V Jv-~v' V x Jv'

In this equation, the equivalent inclusion method is used (Eshelby, 1957; Mura, 1982), so
that the inhomogeneities are simulated by inclusions with transformation strains, P"(x).
The quantity j, termed the average "polarization strain", is defined as

I L y" = ~ L r P" d V,
N " N " Jv'

(5)

where y" is the polarization strain of V"; w = N/ V. In the remainder of the paper, it
is considered that the overall response is determined once the polarization strains are
calculated.

Let us remark that the assumption of statistical homogeneity is of paramount import­
ance because it implies that no length scale can enter the constitutive equations. As a result,
the following simplifications are allowed:
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(1) The overall response is defined only in terms of the unweighted volume averages aand
i because any other weight is associated with a length scale.

(2) As far as the overall response is concerned, it is immaterial whether the microscopic
fields are induced by uniform surface tractions or linear displacements. Thus, without
any loss of generality, it is supposed that the RVE is subjected to surface displacements
£0 x, where x is a point on the surface of the RVE. In this case, i = £0.

(3) The macroscopic geometry of the RVE can be chosen as desired, as long as the RVE
contains a sufficiently large number of inhomogeneities. In the sequel, the RVE is a
cube.

3. THE METHOD

3.1. Overview
In principle, the RVE described in the previous section can be analysed directly, using,

for example, the finite element method. Indeed this approach has been proven useful for 2­
D problems (Brockenbrough et al., 1991), but 3-D problems which involve many spheres
per RVE cannot be handled in this manner. Also, since the RVE occupies a finite domain
it is difficult to take advantage of classical techniques because fundamental solutions are
generally available only for infinite domains. This obstacle is eliminated if the RVE is
replicated so that an infinite periodic array is formed with the RVE as the unit cell. In order
to determine the overall response using this array, three steps are undertaken.

Step 1. An auxiliary boundary-value problem is formulated for the RVE imbedded
into an infinite body of the matrix material (Rodin and Hwang, 1991). Based on this
problem, it is demonstrated how a rigorous integral equation formulation for the trans­
formation strains is approximated by a system of linear algebraic equations for the polari­
zation strains. Since the auxiliary problem is stated for a finite number of inhomogeneities
in an infinte matrix, it is free of the well-known convergence difficulties associated with an
infinite number of inhomogeneities [see O'Brien (1979) for references].

Step 2. Following O'Brien (1979), we consider a limit as the number ofinhomogeneities
and the volume occupied by the composite material simultaneously tend to infinity.

Step 3. The limit is attained by replicating the RVE so that the periodic array is formed.
Algebraic equations for the periodic array are derived with the aid of Ewald's technique as
suggested by Beenakker (1986) and Brady et al. (1988).

3.2. The auxiliary problem
Let the RVE, described in Section 2, be imbedded into an infinite matrix with

stiffness tensor C. The infinite body is subjected to remote boundary conditions so that the
remote uniform strain field is £0. The polarization strains induced by £0 are determined by
the equivalent inclusion method (Eshelby, 1957; Mura, 1982), and it is supposed that the
reader is familiar with its basics.

For a reference inhomogeneity V~, the equivalence between the inhomogeneity and the
inclusion is established if the condition

(6)

holds for any point inside V~. In this equation, £~ is the strain field in the domain v~ induced
by the inhomogeneities. This field can be written in the form

£~(x) = r K(x, Y)P(y) dy+ L r K(x, Y)fJ~(y) dy.
JVI% 11#=<X Jv'J (7)

In this equation, dy denotes an infinitesimal volume centered at the point y. The components
of the kernel K(x,y) are (Mura, 1982)
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(8)

(9)

is the fundamental solution of linear elasticity. In (8), the standard index notation is
adopted, and the derivatives can be evaluated with respect to either x or y. In (9), J1. is the
shear modulus, v is Poisson's ratio, bu is the Kronecker symbol, and Ix - y[ is the distance
between x and y. As the index IX runs from I to N, (6)-(9) form a system of linear integral
equations for Ir(x).

Eshelby (1957) proved that the integral of the kernel K(x, y) is a constant if x and y
belong to the same inhomogeneity:

With this result, (7) is integrated over V' (Rodin and Hwang, 1991):

f B'(x)dx = Sy'+ L f f K(x,y)fJ~(y)dydx.
Jv:x ,,*rx Jv Ct JV/1

(10)

(I 1)

A particular approximation which reduces integral equations (6)-(9) to an algebraic
form is obtained as follows. Let us decompose the transformation strain of a neighbor V~

into its uniform and non-uniform parts,

with the uniform part

1
<fJ~>= v-;; y'l.

If we neglect the effect of p~ (x) on elastic interactions, i.e assume that

J, Iv, Iv. K(x, y)jj~(y) dy dx

(12)

(13)

is small, a combination of (6)-(13) leads to an algebraic system of equations for the
polarization strains:

C'[BO+ ~Sy'+ L T(r'~)y~J = C[IlO+ -~Sy'+ L T(r'~)y,,_J. y.J. (14)
V ~... V ~... V

The tensor T(r'~), introduced in (14), is defined as

T(r"~) = -.t- f f K(x, y) dy dx,
V V~ Jv' Jv. (15)

where r'~ is the vector connecting the centers of V' and V~. The components of T(r'~) are
given by (Willis and Acton, 1976; O'Brien, 1979; Rodin and Hwang, 1991)
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with

(17)

In (17), aa and a~ are the radii of va and V~, and ra~ = Ira~l.

Let us mention two interesting features of the adopted approximation. First, since
T(ra~) = T(r~a), algebraic equations (14) are characterized by a symmetric 6N x 6N matrix
as long as all inhomogeneities have the same stiffness. Second, the introduced assumption
does not involve the reference inhomogeneity. This important distinction between the
reference inhomogeneity and its neighbors was pointed out by Kachanov (1985, 1987) for
cracks, and by Rodin and Hwang (1991) for ellipsoidal inhomogeneities. In contrast,
Nemat-Nasser et al. (1982) did not make the distinction, and as a result adopted an
unnecessary assumption.

3.3. O'Brien's method
In order to determine the overall response using the formalism developed in Section

3.2, it is necessary to consider a limit as the number of inhomogeneities tends to infinity.
This limit has to be evaluated with care, since the tensor T(ra~) decays as (ra~) - 3 so that the
sum in (14) is only conditionally convergent. Perhaps the most compelling explanation of
this paradox is due to O'Brien (1979). In that paper, it is shown that the convergence
difficulty does not arise if the limit is evaluated so that the number of inhomogeneities and
the volume occupied by the composite material tend to infinity simultaneously.

The limit involves a sequence of finite-size composite material cores imbedded into an
infinite effective matrix with stiffness C*; in the limit, r, the surface bounding the core,
tends to infinity. The key to O'Brien's analysis is a proper assessment of the displacement
and traction fields on r induced by the remote strain field So in the effective matrix. The
argument is that the majority of the inhomogeneities inside r, except for those located in
a boundary layer, do not "realize" that there is the material transition across r. As a result,
it is possible to substitute the microscopic fields on r with their macroscopic counterparts.
Accordingly, on r, both the traction and displacement vectors can be specified:

u(y) = iy = eOy and t(y) = cin(y) = (CsO-wCj)n(y); yer. (18)

Here, n is the outward normal to r. The displacement field in the core, u'(x), induced by
the boundary data on r is derived from Somigliana's formula (Gurtin, 1972):

(19)

The corresponding strain field, s'(x), is derived from (19) in two steps. First, u'(x) is
differentiated, and, second, the singularity for small Ix-yl is resolved. The latter step is
accomplished with the aid of the divergence theorem applied to a domain V' which is
bounded by the surface r and the surface of a small sphere centered at x :

s'(x) = eO-wSj-w r K(x,y)jdy.
Jv' (20)

Thus, in the limit as the composite material fully replaces the effective matrix, s'(x) must
be used instead of SO in integral equations (6)-(9). Accordingly, in (14), SO must be substituted
by the average of s'(x) evaluated over the domain va:
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I::.r: () - ev i j"<£) =£ -wS)'_·; K(x,y)jdydx.
V '"

(21 )

In Section 3.4, it is shown that the integral in (21) combined with the sum in (14) leads to
an absolutely convergent formulation. This formulation, however. is still unsuitable for
computations due to extremely slow convergence.

3.4. The periodic array
Equations (14) and (21) can be recast into a form suitable for computations if the

limit is attained by replicating the RYE so that an infinite periodic array is formed. In this
case, it is possible to take advantage of Ewald's technique as suggested by Beenakker (1986)
and Brady et al. (1988).

For each inhomogeneity in the periodic array, it is appropriate to assign two indices.
The first index, 1], identifies the corresponding inhomogeneity within the original RYE,
and the second index, A, identifies the cube in which the designated inhomogeneity lies. Due
to periodicity, such attributes as the polarization strain, volume. etc. can be unambiguously
identified with only one index. Also, we make one exception: the single index :x is assigned
to the reference inhomogeneity. which is always inside the original cube. Following this
convention, the sum in (\4) is rewritten as a double sum:

(22)

In accordance with Ewald's technique, the potentials in (17) are split using the error
function:

1>(1') = 1>(1'(1')+1>12)(1'),

1/1(1') = 1/111'(1')+1/11 2)(1'),

(t/ 11(1') = erfc (¢r)1>(r),

1/11
1

1(I') = erfc (~r)l/I(r),

1>( 2)(1') erf((r)1>(r).

1/1( 2)(I') = erf (~r)l/I(r), (23 )

where ~ is a positive constant. The error function and its complement are given by

2 II'erf (I') = -- r' exp ( - t 2
) dt and erfc (I') = 1- erf (1').

V n (I

The potentials {1>l ll (1'),1/11 1)(r)} and {1>1 2) (r),1/I121(r)} generate the tensors TI I' (r) and TI21(r).

as prescribed by (\ 6). These tensors permit the following rearrangement of the double sum
in (22) :

II T(r"O')y'1 = II TII'(r"")y'I +ILT'2 '(r"")y'I- TP)(r = Ojy'o (24)
:~./.i of 7. :./.i.: -;-:r.

In the right-hand side of this equation, the first sum converges exponentially as I' ->x due
to the presence of erfc (~r), however the second sum is only conditionally convergent. The
second sum is evaluated in two steps. First. it is shown that 1: 1: Till (r'";})'" becomes
absolutely convergent if it is combined with a conditionally convergent integral in (21).
Second, the absolutely convergent sum is evaluated in a reciprocal Fourier space, where it
converges exponentially.

The Fourier transform of a function fer} is defined as

f(s) = ( fer) exp (is' r) dr. i = vi - I.
JR'

where R 3 designates the entire three-dimensional space. The argument r is associated with
position vectors in the physical space, and the argument s with those in the reciprocal space.
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For an infinite periodic lattice in the physical space, one can construct the reciprocal lattice
according to the equation

exp (irA. sP) = 1,

where r" and sP are the lattice points. The period of the lattice in the physical space is the
cube size L.

The transformation of ~ ~ T(2)(r'~")y~ to the reciprocal space is accomplished with the
aid of Poisson's sum formula (Morse and Feshbach, 1953):

LT(2)(f") = ~3 L T(2)(sp).
A P

From (25) we obtain

LLT(2)(r'~A)y~= --; LLT(2)(sP)t exp (-isP • r'~)
L

1= L 3 L LT(2) (sP)t cos (sP •r'~),

(25)

(26)

where the vector r'~ is defined in the original RVE. The exponential and cosine factors
reflect the shifted position of the simple cubic lattice generated by V" with respect to the
lattice generated by V'. The tensor T(2)(s) is evaluated directly from (16) and (17) (see the
Appendix) :

(2) _ 1 (_~) {[_ ~ __1 1 (a")2+(a~)2J
T/jk/(s) - 2(1-v) exp 4~2 x S4 2S2~2 4~4 + 5s2 S/SjSk S/

+ s\ [2vs;sjc5k/+ (1- V) (S/Skc5j/+s;s/c5jk +SjSk c5i/ +SjS/c5;k)]}. (27)

It is clear from (27), that T(2)(s) converges exponentially for large s, however there is a
weak singularity at the point s = o. This is not surprising because the Fourier images of
remote points of the physical space are concentrated at the origin of the reciprocal space,
and as a result the divergence of T(2)(r) for large r translates into the divergence of T(2)(S)
for small s. In order to demonstrate that the singularity of the double sums in (26) is exactly
cancelled by the integrals appearing in (21), the following manipulations are performed:

wSy+ v
w

, r r K(x, y)y dy dx = v
w

, r r K(x, y)y dy dx
JV7 Jv' Jv~ JR 3

= ;, r D(r)jdr = V
W

, lim D(s)j = L\ lim LT(2)(s)y~. (28)JR3 s_O 8-0 "

In this equation, D(r) is the "exterior" Eshelby tensor of the inhomogeneity V' [see Mura
(1982)]. This tensor can be derived from (16) if one puts cP = VOIr and t/J = V'r+
4n(a') 5 /15r. Equation (28) implies that the inhomogeneities lying inside the RVE con­
taining the origin of the reciprocal space must be excluded from the last sum in (26).

The tensor T(2)(r = 0) is evaluated with the aid ofthe Fourier transform ofT(2)(s) (see
the Appendix) :
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2 3[(a")2+(ary)2]~5_25(1+v)~3
TI;2,(r = 0) =. 75n 3i2 (1-v) (bikbj/+bi/bjk)

3[(a")2+(dl)2]~5_25(2-vKJ ..
+ ----75n3!2(1=~) c),i()kl' (29)

At this stage, the sum in (14) can be rewritten as

Now (14) and (30) form a system of 6N algebraic equations for the polarization strains of
the periodic array generated by the RVE. Finally, the parameter ~ is chosen so that the
sums in the physical and reciprocal spaces have equal rates of convergence : ~ = v!~/L.

4. TEST PROBLEMS

In this section, the method's predictions are compared with detailed numerical solutions
and variational bounds for arrays of identical spherical inhomogeneities whose centers are
located at the nodes of three basic cubic lattices: simple cubic (SC), body-centered cubic
(BCC) , and face-centered cubic (FCC). The inhomogeneities are isotropic and characterized
by the elastic constants /1-1 and VI. The overall elastic response of the arrays is characterized
by cubic symmetry (Nunan and Keller, 1984), so that only three material constants are
required:

/1-* = Cf212'

[1* = !Cflll-!Cfl22' (31 )

In this equation, the elastic stiffness components are given with respect to a coordinate
system whose base vectors are normal to the faces of the unit cell.

So far, the most comprehensive compilation of benchmark numerical solutions for
cubic arrays of spherical inhomogeneities was reported by Sangani and Lu (1987). Those
authors extended a collocation technique employed by Nunan and Keller (1984) who
considered only rigid inhomogeneities. Brockenbrough et al. (1992) provided finite element
solutions for arrays of voids and rigid inhomogeneities. Their computations, however, are
limited to small volume fractions of inhomogeneities, c ~ 0.3. Also, finite element solutions
for SC arrays of voids, including large volume fractions, were obtained by this author.
Since the majority ofsolutions reported in the literature are for v = Vi = 0.3, all comparisons
in this paper are limited to these cases as well.

The constants introduced in (31) must be within variational bounds, as determined for
cubic materials (Avellaneda, 1987). These bounds are less restrictive than the original
Hashin-Shtrikman bounds for the shear moduli /1-* and [1*, and coincide with the Hashin­
Shtrikman bounds for K*. In the sequel, we refer to the bounds only if they are violated.

Table 1 contains four sets of solutions for SC arrays of voids: by Sangani and Lu

Table I. The overall elastic constants of SC arrays of voids : (SL) Sangani and Lu (1984), (B) Brockenbrough ('/
al. (1992), (R) present finite element calculations, (M) the proposed method

K*/K 11*III ii'lll

c SL B R M SL B R M SL B R M

0.10 0.774 0.778 0.774 0.817 0.814 0.812 0.841 0.847 0.84\
0.20 0.602 0.605 0.603 0.604 0.665 0.642 0.642 0.641 0.718 0.724 0.720 0.719
0.30 0.464 0.468 0.466 0.471 0.554 0.494 0.492 0.496 0.608 0.616 0.610 0.612
0.40 0.363 0.351 0.364 0.470 0.365 0.379 0.504 0.506 0.512
0.50 0.242 0.245 0.276 0.375 0.256 0.288 0.394 0.373 0.413
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(1987) (SL), by Brockenbrough et al. (1992) (B), by this author obtained with the finite
element method (R), and by the proposed method (M). The maximum porosity considered
here, C = 0.5, is quite close to the maximum attainable, Cmax ~ 0.5236. A remarkable feature
of Table I is that the benchmark solutions exhibit considerable disagreement for the
constant Jl*. In particular, for C= 0.5, the prediction of Sangani and Lu exceeds author's
finite element prediction by 46%. This disagreement is particularly disconcerting because
in both cases convergent numerical procedures were used. The two sets of finite element
solutions are quite close to each other for all three constants, there is, however, one
important detail. The predictions of Brockenbrough et al. for K*, for c = 0.1 and c = 0.2,
do exceed the corresponding upper bounds in the third digit. According to Brockenbrough
(1992), this is due to incomplete convergence ofcoarse meshes employed by Brockenbrough
et al. (1992). Overall, the proposed method agrees better with the finite element solutions
than with the solutions ofSangani and Lu, and it is fair to state that the method's predictions
are not considerably different from the benchmark solutions.

Approximate solutions of Nemat-Nasser et al. (1982) for SC arrays of voids cannot
be treated as benchmark solutions because their approach, as well as the proposed method,
is not structured as a sequence of successive approximations which converges to the exact
solution. Nevertheless, since Nemat-Nasser et al. adopted essentially the same assumption
as we did, and managed to compute the series they used, their solutions are coincident with
ours. Let us mention that, in the computat.ions reported in this paper, the series in (30) was
evaluated using 53 -I = 124 replicas of the RVE; this guarantees at least four-digit
accuracy. In the computations of Nemat-Nasser et aJ., three-digit accuracy was obtained
as a result of using 101 3-1 = 1,030,300 replicas.

In Tables 2 and 3, the method's predictions are compared with the finite element
solutions of Brockenbrough et al. for BCC and FCC arrays of voids. These cases were not
considered by Sangani and Lu. As in Table 1, there is only minor disagreement between
the two analyses. Again, for C = 0.1 and C = 0.2, Brockenbrough's predictions for K* exceed
the corresponding upper bounds in the third digit.

In cases which involve elastic inhomogeneities, the method's predictions are compared
with solutions of Sangani and Lu (Figs 1-3). These comparisons are presented only for the
constant Jl* since the other two constants behave similarly. Figure I contains results for SC
arrays for JlI /Jl = 0.05, 5, and 40; the curves correspond to the solutions of Sangani and
Lu and the scattered symbols to those obtained by the method. The data is plotted for Jl* /Jl
versus c. Results for BCC (cmax ~ 0.6802) and FCC (cmax ~ 0.7403) arrays are presented in
Figs 2 and 3, respectively. Figures 1-3 reveal that the method performs well for JlI/Jl = 0.05
and JlI/Jl = 5 even if C is close to Cmax ' There is, however, a clear divergence tendency for
JlI/Jl = 40 as c approaches Cmax ' This tendency will persist further as the ratio JlI /Jl increases.

Table 2. The overall elastic constants of Bee arrays of voids: (B) Brocken­
brough et al. (1992), (M) the proposed method

"·1" Jl*IJl fl*IJl

c B M B M B M

0.10 0.784 0.774 0.840 0.829 0.834 0.819
0.20 0.604 0.604 0.684 0.686 0.660 0.662
0.30 0.469 0.471 0.552 0.564 0.521 0.527

Table 3. The overall elastic constants ofFCC arrays ofvoids : (B) Brockenbrough
et al. (1992), (M) the proposed method

"*1" Jl*IJl fl*IJl

c B M B M B M

0.10 0.776 0.774 0.830 0.828 0.821 0.820
0.20 0.611 0.604 0.695 0.686 0.675 0.662
0.30 0.464 0.471 0.553 0.565 0.519 0.526
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Fig. 1. Normalized shear modulus, 11*111, versus the volume fraction of spheres, c, for se arrays of
inhomogeneities. The lines designate results due to Sangani and Lu (1987): 11'111 = 0.05,

- 111/11 = 5, --- 111111 40. The scattered symbols designate results obtained by the
proposed method: • 111111 = 0.05, • IIIIp = 5, .. IIIIII 40.
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Ultimately, for rigid inhomogeneities, the ratio l.l*/fllogarithmically diverges (Nunan and
Keller, 1984) in the limit as c .... Cmax ' This feature cannot be captured by the proposed
method. A modification which can remedy this problem is briefly discussed in Section 5.4.
To this end, it is expedient to point out that the majority of composites encountered in
structural applications are characterized by the JlI/Jl ratios which are less than 40. This is
definitely true for metal- and ceramic-matrix composites. For polymer-matrix composites,
typical values of fl = 2 GPa (PMMA) and JlI = 40 GPa (glass) (Ashby and Jones, 1980)
lead to JlI /Jl = 20. The ratio JlI /Jl can be very large for solid propellents, but these composites
typically exhibit strongly inelastic response so that, in this case, the use of linear elasticity
per se is questionable.

5. RELATED METHODS

In this section, we examine connections between the proposed method and closely­
related methods which preserve the geometry of the RVE and approximate the rigorous
problem formulation by a system of algebraic equations. For simplicity, the comparisons
are based on the auxiliary problem stated for N identical inhomogeneities in an infinite
matrix.

5.1. Multipole expansion
According to this method (Morse and Feshbach, 1953), integral equations (6)-(9) are

approximated using Taylor's expansion. In particular, the external strain field induced by
an inhomogeneity V" is obtained upon expanding the kernel K(x, y) about the center r~ of
V~:

i
Kijkl(X, Y)fJ'JAY) dy :::: Kijkl(X, 1"') i fJ'b(y) dy+K1jkl,m(X, 1"') i (Ym -~)fJ'b(y) dy

~ ~ ~

+ 2\ Kukl.mn(X,I"')i (Ym-~)(Yn-r:DfJMy)dy+ .... (32)
. v'

If only the leading term of this expansion is retained, (11) is approximated as

i 1l"(X) dx = Sy" + L [i K(x, r~) dXJ,,'l.
va. ,,::Ftx v«

(33)

Thus, if integral equations (6)-(9) are reduced to an algebraic form according to (33), the
tensor T(r"~) in (14) must be substituted by (l/V") Iv. K(x, 1"') dx. It is important to emph­
asize that the difference between these two tensors is oforder (!}(d- 5), where dis the distance
between the centers normalized by the radius. Since the tensors themselves are (!}(d- 3), the
approximation of elastic interactions adopted in the proposed method is consistent with
the one provided by the leading term of the multipole expansion.

It appears that the proposed method is more appealing than the multipole expansion.
Indeed, in the multipole expansion, a neighbor is simulated by a singular source of the
polarization strain located at the center, while, in the proposed method, the approximation
is in the spirit of the Saint-Venant principle so that the polarization strain is uniformly
distributed inside the inhomogeneity. As a result, the proposed method performs consistently
better than the multipole expansion, at least for the test problems considered in Section 4.

5.2. Expansion of Moschovidis and Mura
In the approach ofMoschovidis and Mura (1975), Taylor's expansion is applied twice.

First, the transformation strain of each inhomogeneity is expanded about its center:
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This approximation is exploited with the aid of Eshelby's polynomial theorem (Eshelby,
1961; Mura, 1982) which states that if x E V" and f(x) is a polynomial transformation strain
of degree m, then the integral Jv. K(x, y)f(y) dy is also a polynomial of degree m. Thus, in
accordance with (34), the strain field induced by fJ"(x) inside the domain V" is a polynomial.
Of course, the strain fields induced by the neighbors are not polynomials inside V". At
this stage, the second expansion is invoked, this time for the strain fields induced by the
neighbors. If only the leading term in (34) is retained, the corresponding algebraic equations
for IY. = 1, ... , N are

C-{1l0+~tl [Iv. K(x,r") dxJfJ~(r~)} = C{IlO+JI [Iv. K(x,r") dxJfJ~(r~)-fJ"(r")}.

(35)

For this truncation, the polarization strains are related to the unknowns fJ"(r") by

(36)

It is interesting that eqns (35) and (36) coincide with those derived from the leading term
truncation of the multipole expansion. This is not the case, however, if higher order terms
are included in both expansions. Furthermore, since Moschovidis and Mura employed
Taylor's expansion twice, one should expect that the multipole expansion is a better choice
between these two methods.

5.3. Method of reflections
This method, which was proposed by Smoluchowski (1911), is virtually unknown in

the solid mechanics community. Numerous applications of the method of reflections to
low-Reynolds-number hydrodynamic interactions can be found in Kim and Karrila (1991).

The method of reflections is an iterative procedure. It is initiated by assigning to each
inhomogeneity the transformation strain induced by the remote field as if the neighbors
were absent. The corresponding polarization strain is denoted by )'"0, where the superscript
odesignates that this is the initial step. For the reference inhomogeneity V", the first itera­
tion involves the equation

which implies that the strain field induced by the neighbors of V" is determined in terms of
y~o. As IY. runs from 1 to N the first iteration is completed. For the second iteration, the strain
field induced by the neighbors is determined in terms of y~ I, and so on. Thus the method
of reflections does not require inversion of the large 6N x 6N matrix, instead the many 6 x 6
matrices have to be inverted.

It is easy to demonstrate that, for identical inhomogeneities, a successive approximation
y"n can be written in the form

(38)

In this equation, I is the fourth rank symmetric identity tensor, and U" is a fourth rank
tensor dependent on the geometry and elastic properties of the array. This series converges
as long as the inhomogeneities do not intersect, and in the limit as n -+ 00, the polarization
strain y"" coincides with that obtained with the proposed method (Durlofsky et al., 1987).
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5.4. Stokesian dynamics
Stokesian dynamics (Durlofsky et al., 1987; Brady and Bossis, 1988; Brady et al.,

1988) is intended for dynamic simulations of low-Reynolds-number suspensions of rigid
spherical particles. The governing equations for such suspensions are parallel to those for
rigid particles imbedded into an incompressible elastic matrix. The proposed method is not
restricted to this particular class of problems, thus it is more general than Stokesian
dynamics. However, as far as this particular class of problem is concerned, Stokesian
dynamics is the better method.

In Stokesian dynamics, two types of hydrodynamic interactions are identified: long­
range and short-range. The former are determined exactly as it is done in the proposed
method. The latter are pair-wise interactions due to singular lubrication forces in the
ligament between closely positioned inhomogeneities. These interactions become dominant
in arrays with high volume fractions, and they guarantee correct asymptotic behavior for
the overall viscosity in the limit as c ~ Cmax ' Thus, in Stokesian dynamics, both limits for
small and large c are properly incorporated, and therefore the method is capable ofhandling
both dilute and concentrated suspensions. The short-range interactions are calibrated using
solutions for two rigid inhomogeneities (Kim and Karrila, 1991). For further details the
reader is refered to the original papers.

In solid mechanics, the nature of short-range interactions is much more complex. Of
course, following Brady and co-workers, one can simply take advantage of asymptotic
solutions for two rigid inhomogeneities in the elastic matrix (Nunan and Keller, 1984). This
extension, however, does not reflect two important physical factors. First, two identical
inhomogeneities do not interact as rigid inhomogeneities unless their Young's modulus
exceeds that of the matrix by about three orders of magnitude (Yeh, 1992). This estimate
was obtained as a result of numerical experiments with the conduction problem which
exhibits the same singularity in the ligament as the elasticity problem (Batchelor and
O'Brien, 1977; Nunan and Keller, 1984). Since solid composite materials are characterized
by much lower ratios of the Young's moduli, the inhomogeneities cannot be treated as rigid
and the asymptotic solution becomes considerably more complicated. The second factor is
related to the probable onset of inelastic deformation in the ligament in the form of yielding
or debonding. This consideration is particularly important ifone realizes that the asymptotic
elastic solution for rigid inhomogeneities predicts the stress in the ligament to be pro­
portional to X- I and the polarization strain only proportional to In X, where X is the
ligament thickness normalized by the radius. Thus, before the short-range interactions can
significantly influence the overall response, they must induce very high stress concentrations
which should lead to inelasticity.
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APPENDIX

According to (16), (17) and (23), the Fourier transform of the tensor T(')(r) can be written as

with the potentials

and

, i erf«(r)4>")(s) = ----.- exp(s'r)dr
R' r

i (a')2+(a")2 i erf«(r)
1/I(2)(S) = erf«(r)rexp(s·r)dr+-·····_- ---exp (s'r) dr.

R~ 5 R 3 r

(A2)

(A3)

Since the pre-exponential factors of the integrands in (A2) and (A3) depend only on r, the expressions for the
potentials can be simplified as follows:

and

, i~erf«(r) ,sin(sr)4>(-)(s) = --- 4nr ---- dr
o r sr

(M)
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.I,W() tOO f(.I')r4 2 sin (sr) d (0")2 +(a")2 tOO erf(~r) 4 2 sin (sr) d
'I' S = er.,r 11:1' -- 1'+---- -- 11:1' -- r.

o sr 5 0 r sr

With the introduction of the integral (Gradshteyn and Ryzhik, 1980)

rOO 411: ( s.)
l(s) = 4n Jo erf(~r)sin(sr)dr = sexp - 4~2 ,

the potentials can be calculated from

1
tP,2!(S) = -1(s)

s

and

The tensor T(21(r = oJ in (27) is evaluated in terms of the inverse Fourier transform ofT'21(s):

This integral is written as
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(A5)

(A6)

(A7)

(A8)

(A9)

(AIO)

where Q(s) is the surface ofa sphere with radius s. The surface integral can be calculated using simple symmetry
arguments,

(All)

and the integral with respect to s is an elementary combination based on the integral (Gradshteyn and Ryzhik,
1980),

(AI2)

$AS 3(h14-8


